Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 935
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1506-1516, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621934

RESUMO

Rubus chingii and R. chingii var. suavissimus are unique dual-purpose plant resources, with significant nutraceutical, pharmaceutical, and economic value, as well as promising prospects for further development. To investigate the genetic structure and evolutionary characteristics of these two varieties, this study conducted plastome sequencing using the Illumina HiSeq XTen sequencing platform. Subsequently, the study performed assembly, annotation, and characterization of the genomes, followed by a comparative plastome and phylogenetic analysis using bioinformatics techniques. The results revealed that the plastomes of R. chingii and R. chingii var. suavissimus exhibited a tetrad structure, comprising a large single-copy region(LSC), a small single-copy region(SSC), and two inverted repeat regions(IRs). The study identified a total of 56 simple sequence repeats(SSRs) after comparative analysis, predominantly consisting of A and T. Furthermore, the structure of the IR boundary genes in both varieties was found to be highly conserved, with only minor nucleotide variations. Additionally, the study identified three highly variable regions: rps16-trnQ-psbK, trnR-atpA, and trnT-trnL, which held promise as potential identification marks for further development and utilization. Phylogenetic analysis results obtained by the maximum likelihood and Bayesian inference methods demonstrated a close clustering of R. chingii and R. chingii var. suavissimus(100% support), with their closest relatives being R. trianthus. This study, focusing on plastome-level genetic distinctions between these two varieties, lays a foundation for future species protection, development, and utilization.


Assuntos
Rubus , Filogenia , Teorema de Bayes , Evolução Biológica , Repetições de Microssatélites
2.
MMW Fortschr Med ; 166(7): 33, 2024 Apr.
Artigo em Alemão | MEDLINE | ID: mdl-38637384

Assuntos
Sorvetes , Rubus , Humanos
3.
Microb Ecol ; 87(1): 50, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466433

RESUMO

Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.


Assuntos
Micorrizas , Rubus , Micorrizas/fisiologia , Esporos Fúngicos , Plantas/microbiologia , Bactérias , Clorofila , Água
4.
Environ Microbiol ; 26(3): e16613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509764

RESUMO

Raspberry production is under threat from the emerging fungal pathogenic genus Cladosporium. We used amplicon-sequencing, coupled with qPCR, to investigate how fruit age, fruit location within a polytunnel, polytunnel location and sampling date affected the fruit epiphytic microbiome. Fruit age was the most important factor impacting the fungal microbiome, followed by sampling date and polytunnel location. In contrast, polytunnel location and fruit age were important factors impacting the bacterial microbiome composition, followed by the sampling date. The within-tunnel location had a small significant effect on the fungal microbiome and no effect on the bacterial microbiome. As fruit ripened, fungal diversity increased and the bacterial diversity decreased. Cladosporium was the most abundant fungus of the fruit epiphytic microbiome, accounting for nearly 44% of all fungal sequences. Rotorod air samplers were used to study how the concentration of airborne Cladosporium inoculum (quantified by qPCR) varied between location (inside and outside the polytunnel) and time (daytime vs. nighttime). Quantified Cladosporium DNA was significantly higher during the day than the night and inside the polytunnel than the outside. This study demonstrated the dynamic nature of epiphytic raspberry fruit microbiomes and airborne Cladosporium inoculum within polytunnels, which will impact disease risks on raspberry fruit.


Assuntos
Cladosporium , Rubus , Cladosporium/genética , Rubus/microbiologia , Frutas/microbiologia
5.
Sci Rep ; 14(1): 5711, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459201

RESUMO

This study aimed to investigate the biological activities of Lactobacillus gasseri SM 05 (L. gasseri) and Lacticaseibacillus casei subsp. casei PTCC 1608 (L. casei) in the black raspberry (Rubus dolichocarpus) juice (BRJ) environment, and also the anti-adhesion activity against Salmonella typhimurium (S. typhimurium) in fermented black raspberry juice (FBRJ). Results showed significant anti-adhesion activity in Caco-2 epithelial cells. In the anti-adhesion process, lactic acid bacteria (LAB) improve intestinal health by preventing the adhesion of pathogens. Adding LAB to BRJ produces metabolites with bacteriocin properties. Major findings of this research include improved intestinal health, improved antidiabetic properties, inhibition of degradation of amino acids, and increase in the nutritional value of foods that have been subjected to heat processing by preventing Maillard inhibition, and inhibition of oxidation of foodstuff by increased antioxidant activity of BRJ. Both species of Lactobacillus effectively controlled the growth of S. typhimurium during BRJ fermentation. Moreover, in all tests, as well as Maillard's and α-amylase inhibition, L. gasseri was more effective than L. casei. The phenolic and flavonoid compounds increased significantly after fermentation by both LAB (p < 0.05). Adding Stevia extract to FBRJ and performing the HHP process showed convenient protection of phenolic compounds compared to heat processing.


Assuntos
Lacticaseibacillus casei , Lactobacillus gasseri , Probióticos , Rubus , Stevia , Humanos , Fermentação , Células CACO-2 , Extratos Vegetais/farmacologia
6.
Talanta ; 273: 125883, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521023

RESUMO

Quercetin (QUE) is a powerful antioxidant and one of the common phenolic compounds found in plants, vegetables, and fruits, which has shown many pharmacological activities. The complex nature of the matrix in which QUE is found and its importance and potential uses in diverse applications force the researchers to develop selective and sensitive sensors. In the present work, a novel molecularly imprinted polymer (MIP)-based electrochemical sensor was fabricated for the selective and sensitive determination of the QUE in plant extracts and food supplements. Tryptophan methacrylate (TrpMA) was chosen as the functional monomer, whereas the photopolymerization (PP) method was applied using a glassy carbon electrode (GCE). Electrochemical and morphological characterizations of the developed sensor (TrpMA@QUE/MIP-GCE) were performed using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). The linear range of the developed sensor was determined to be in the range of 1.0-25 pM, while the limit of detection (LOD) was calculated to be 0.235 pM. In conclusion, The TrpMA@QUE/MIP-GCE sensor might be classified as a promising platform for selective and sensitive determination of QUE not only in plant extracts but also in commercial food supplements because of its reliability, reproducibility, repeatability, stability, and fast response time.


Assuntos
Fragaria , Impressão Molecular , Rubus , Polímeros/química , Quercetina , Reprodutibilidade dos Testes , Metanol , Técnicas Eletroquímicas/métodos , Carbono/química , Limite de Detecção , Polímeros Molecularmente Impressos , Eletrodos , Extratos Vegetais
7.
Food Chem ; 447: 138919, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452538

RESUMO

The content of gallic acid (GA) is positively correlated with the quality grade of tea. Here, we developed a colorimetric method based on raspberry-like N-doped Mn3O4 nanospheres (N-Mn3O4 NSs) with oxidase-like activity for GA assay. Modulating the electronic structure of Mn3O4 by N doping could promote the catalysis ability, and the produced oxygen vacancies (OVs) can provide high surface energy and abundant active sites. The N-Mn3O4 NSs presented low Michaelis-Menten constant (Km) of 0.142 mM and maximum initial velocity (Vmax) of 9.8 × 10-6 M s-1. The sensor exhibited excellent analytical performance towards GA detection, including low LOD (0.028 µM) and promising linear range (5 âˆ¼ 30 µM). It is attributed that OVs and O2- participated in TMB oxidation. Based on the reaction color changes, a visualized semi-quantitative GA detection could be realized via a smartphone-based system. It could be applied for evaluating GA quality in market-purchased black tea and green tea.


Assuntos
Oxirredutases , Rubus , Oxirredutases/química , Oxigênio , Colorimetria/métodos , Ácido Gálico , Smartphone , Peróxido de Hidrogênio
8.
Int J Food Microbiol ; 413: 110602, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301539

RESUMO

Pressure spray combined with high-voltage electrospray (PS-ES) has garnered considerable interest as a novel, non-thermal approach for microbial inactivation and preservation of liquid food. This study compared PS-ES with heat treatment (HT) to understand its inactivation mechanism against E. coli and S. aureus in a simulated system. Microbial activity, cell permeability, membrane integrity, membrane potential, and cell membrane structure were assessed. Furthermore, the impact of PS-ES treatment on microbial activity and flavor in honey raspberry juice, was examined. The changes in microbial growth and color during storage were also discussed. The experimental findings revealed that PS-ES treatment effectively reduced the number of E. coli and S. aureus by 1.99 and 1.83 log colony-forming units (CFU/mL). Additionally, it disrupted the integrity of bacterial cell membranes increasing their permeability, which led to the release of cellular proteins and nucleic acids. PS-ES treatment lowered the membrane potential and altered the structure of bacterial proteins. Application of PS-ES in honey raspberry juice reduced bacterial counts from 4.48 log CFU/mL to 1.99 log CFU/mL, with less flavor deterioration compared to HT treatment. After 30 days of storage at 4 °C and room temperature, PS-ES effectively controlled the growth of microorganisms in raspberry juice and maintained the color of the juice.


Assuntos
Mel , Rubus , Viabilidade Microbiana , Escherichia coli , Contagem de Colônia Microbiana , Staphylococcus aureus , Conservação de Alimentos
9.
Int J Biol Macromol ; 261(Pt 2): 129825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309402

RESUMO

Raspberry, a traditional medicine food homology species, has important benefits in patients with metabolic syndrome. However, the mechanism of raspberry polysaccharides (RP) on obesity remains unclear. In our study, we showed that RP intervention is negatively associated with body weight gain, hyperlipidemia, inflammation, and fat accumulation in obese mice. RP ameliorated HFD-induced gut microbiota dysbiosis, produced short-chain fatty acids, maintained intestinal barrier integrity, and prevented metabolic endotoxemia, manifested by decreased host lipopolysaccharide level, and increased colon expression of tight junction proteins. These effects might be related with driven by a SCFAs-producing bacterium and downregulation of TLR4/NF-κB signaling transduction. Notably, the abundance of Ruminococcaceae_UCG - 014, Lactobacillus taiwanensis, Bifidobacterium pseudolongum, and Turicibacter are markedly correlated with enhanced intestinal barrier function induced by RP treatment. Thus, we believe that RP could be as a potential health supplement or prebiotic for obesity therapy.


Assuntos
Microbioma Gastrointestinal , Rubus , Animais , Camundongos , Humanos , Frutas/metabolismo , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Lipopolissacarídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
10.
New Phytol ; 242(3): 1348-1362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38407427

RESUMO

Asexual organisms often differ in their geographic distributions from their sexual relatives. This phenomenon, termed geographic parthenogenesis, has long been known, but the underlying factors behind its diverse patterns have been under dispute. Particularly problematic is an association between asexuality and polyploidy in most taxa. Here, we present a new system of geographic parthenogenesis on the tetraploid level, promising new insights into this complex topic. We used flow cytometric seed screen and microsatellite genotyping to characterise the patterns of distribution of sexuals and apomicts and genotypic distributions in Rubus ser. Glandulosi across its range. Ecological modelling and local-scale vegetation and soil analyses were used to test for niche differentiation between the reproductive groups. Apomicts were detected only in North-western Europe, sexuals in the rest of the range in Europe and West Asia, with a sharp borderline stretched across Central Europe. Despite that, we found no significant differences in ecological niches. Genotypic richness distributions suggested independence of the reproductive groups and a secondary contact. We argue that unless a niche differentiation (resulting from polyploidy and/or hybridity) evolves, the main factors behind the patterns of geographic parthenogenesis in plants are phylogeographic history and neutral microevolutionary processes, such as clonal turnover.


Assuntos
Apomixia , Rubus , Partenogênese/genética , Ploidias , Poliploidia
11.
Phytomedicine ; 126: 155029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417241

RESUMO

BACKGROUND: Cancer ranks as the second leading cause of death globally, imposing a significant public health burden. The rise in cancer resistance to current therapeutic agents underscores the potential role of phytotherapy. Black raspberry (BRB, Rubus Occidentalis) is a fruit rich in anthocyanins, ellagic acid, and ellagitannins. Accumulating evidence suggests that BRB exhibits promising anticancer effects, positioning it as a viable candidate for phytotherapy. PURPOSE: This article aims to review the existing research on BRB regarding its role in cancer prevention and treatment. It further analyzes the effective components of BRB, their metabolic pathways, and the potential mechanisms underlying the fruit's anticancer effects. METHODS: Ovid MEDLINE, EMBASE, Web of Science, and CENTRAL were searched through the terms of Black Raspberry, Raspberry, and Rubus Occidentali up to January 2023. Two reviewers performed the study selection by screening the title and abstract. Full texts of potentially eligible studies were retrieved to access the details. RESULTS: Out of the 767 articles assessed, 73 papers met the inclusion criteria. Among them, 63 papers investigated the anticancer mechanisms, while 10 conducted clinical trials focusing on cancer treatment or prevention. BRB was found to influence multiple cancer hallmarks by targeting various pathways. Decomposition of free radicals and regulation of estrogen metabolism, BRB can reduce DNA damage caused by reactive oxygen species. BRB can also enhance the function of nucleotide excision repair to repair DNA lesions. Through regulation of epigenetics, BRB can enhance the expression of tumor suppressor genes, inducing cell cycle arrest, and promoting apoptosis and pyroptosis. BRB can reduce the energy and nutrients supply to the cancer nest by inhibiting glycolysis and reducing angiogenesis. The immune and inflammatory microenvironment surrounding cancer cells can also be ameliorated by BRB, inhibiting cancer initiation and progression. However, the limited bioavailability of BRB diminishes its anticancer efficacy. Notably, topical applications of BRB, such as gels and suppositories, have demonstrated significant clinical benefits. CONCLUSION: BRB inhibits cancer initiation, progression, and metastasis through diverse anticancer mechanisms while exhibiting minimal side effects. Given its potential, BRB emerges as a promising phototherapeutic agent for cancer treatment.


Assuntos
Neoplasias , Rubus , Humanos , Antocianinas/farmacologia , Frutas , Neoplasias/prevenção & controle , Fitoterapia , Rubus/metabolismo , Microambiente Tumoral
12.
Int J Biol Macromol ; 262(Pt 2): 130007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340928

RESUMO

Obesity and associated liver diseases are becoming global public health challenges. Raspberry (Rubus chingii Hu.), as a medicine food homology plant, possesses a series of health-promoting properties, but its protective effect on obesity-related liver injury and the potential mechanisms remain obscure. Herein high-fat diet (HFD)-fed mice were orally treated with raspberry polysaccharides (RCP) for 14 weeks. Treatment with RCP alleviated obesity and associated symptoms including hyperglycemia, hyperlipemia, endotoxemia, as well as hepatic inflammation and oxidant stress in HFD-induced obese mice. RCP restructured the gut microbiota and host metabolism especially by increasing the levels of Dubosiella and its metabolite butyrate. Besides, exogenous butyrate supplementation protected against intestinal barrier disruption, and thereby reduced inflow of lipopolysaccharide and mitigated inflammation and oxidative injury in the liver of obese mice. Therefore, we suggest that RCP can be utilized as a novel prebiotics to improve obesity-induced hepatic oxidative injury by enhancing butyrate-mediated intestinal barrier function.


Assuntos
Rubus , Animais , Camundongos , Camundongos Obesos , Butiratos/farmacologia , 60435 , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Lipopolissacarídeos/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL
13.
Sci Rep ; 14(1): 3863, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365959

RESUMO

The Peruvian Andes are the natural habitat of several wild blackberry species that are little known and exploited due to the lack of technological and scientific development to support their agricultural potential. In this context, a study was conducted to understand the physicochemical composition, bioactive compounds, antimicrobial activity, and in vitro multiplication of four wild blackberry (Rubus sp.) species from the northern Peruvian highlands. The results indicate that fruits of R. floribundus presented the highest content of total soluble solids (9.58 ± 1.83°Brix) and titratable acidity (1.88 ± 0.07% citric acid). The fruits of R. weberbaueri recorded the highest total phenolic content (415.06 ± 8.69 mg GAE/100 g Ff). The antioxidant capacity determined by the DPPH assay varied significantly among species, with the highest value found in fruits of R. andicola (50.27 ± 0.11 mg TE/100 g Ff). The fruit extracts of R. weberbaueri and R. andicola showed better antimicrobial activity, with Staphylococcus aureus being the most sensitive bacterium. In the in vitro multiplication phase, the results show that BAP (6-Benzylaminopurine) has a significant effect at a dose of 1.5 mg l-1 on shoot number, leaf number, and shoot length. The results may help in the management of genetic resources.


Assuntos
Anti-Infecciosos , Rubus , Rubus/química , Peru , Antioxidantes/química , Fenóis/farmacologia , Fenóis/análise , Frutas/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise
14.
Sci Rep ; 14(1): 4130, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374139

RESUMO

Multi-drug resistant (MDR) bacteria are considered a serious public health threat. Also, increasing rate of resistance to anticancer drugs, as well as their toxicity, is another point of concern. Therefore, the new antibacterial and anticancer agents are always needed. The synthesizing silver nanoparticles (AgNPs) using medicinal plants, is an effective approach for developing novel antibacterial and anticancer agents. Rubus discolor, a native species of the Caucasus region, produces leaves that are typically discarded as a by-product of raspberry production. The present study has focused on optimizing the green synthesis of AgNPs using R. discolor leaves extract through response surface methodology. The optimal values for AgNPs synthesis were an AgNO3 concentration of 7.11 mM, a time of 17.83 h, a temperature of 56.51 °C, and an extract percentage of 29.22. The production of AgNPs was confirmed using UV-visible spectroscopy (λmax at 456.01 nm). TEM analysis revealed well-dispersed AgNPs (an average size of 37 nm). The XRD analysis confirmed the crystalline structure. The EDX detected a strong peak at 3 keV corresponded to Ag. The zeta potential value (- 44.2 mV) indicated the stability of nanoparticles. FT-IR spectra showed the presence of various functional groups from plant compounds, which play an important role in the capping and bio-reduction processes. The AgNPs revealed impressive antibacterial activities against MDR Escherichia coli and Pseudomonas aeruginosa (MIC ranging from 0.93 to 3.75 mg ml-1). The phytochemical analysis indicated the presence of phenolics, tannins, and flavonoids on the surface of AgNPs. They also showed significant cytotoxic effects on A431, MCF-7, and HepG2 cells (IC50 values ranging from 11 to 49.1 µg ml-l).


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Neoplasias , Rubus , Prata/farmacologia , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/química , Bactérias , Antineoplásicos/química
15.
Phytopathology ; 114(1): 137-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38318843

RESUMO

Interactions between microorganisms and frugivorous insects can modulate fruit rot disease epidemiology. Insect feeding and/or oviposition wounds may create opportunities for fungal infection. Passive and active dispersal of fungal inoculums by adult insects also increases disease incidence. In fall-bearing raspberries and blackberries, such vectoring interactions could increase crop damage from the invasive pestiferous vinegar fly Drosophila suzukii (spotted-wing drosophila). Periods of peak D. suzukii activity are known to overlap with several species of primary fruit rot pathogen, particularly Botrytis cinerea and Cladosporium cladosporioides, and previous work indicates that larvae co-occur with and feed on various filamentous fungi at low rates. To further our understanding of the epidemiological consequences that may emerge from these associations, we surveyed the filamentous fungal community associated with adult D. suzukii, isolating and molecularly identifying fungi externally and internally (indicating feeding) from field-collected adults over 3 years. We isolated and identified 37 unique genera of fungi in total, including known raspberry pathogens. Most fungi were detected infrequently, and flies acquired and carried fungi externally at higher richness, frequency, and density relative to internally. In a worst-case scenario laboratory vectoring assay, D. suzukii adults were able to transfer B. cinerea and C. cladosporioides to sterile media at 0, 24, 48, and 72 h after exposure to sporulating cultures in Petri dishes. These results collectively suggest an adventitious vectoring association between D. suzukii and fruit rot fungi that has the potential to alter caneberry disease dynamics.


Assuntos
Drosophila , Rubus , Animais , Feminino , Doenças das Plantas , Rubus/microbiologia , Larva , Frutas/microbiologia , Controle de Insetos/métodos
16.
Molecules ; 29(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398530

RESUMO

Endometriosis is a common gynecological condition with a complex physio-pathological background. This study aimed to assess the role of Rubus idaeus leaf extract (RiDE) as a potential therapeutic agent in reducing the size of the endometriotic lesions and modulate the plasma expression of MMP-2, MMP-9, and TGF-ß1. The endometriotic lesions were induced in a rat model by the autologous transplant of endometrium. Thirty-six female rats, Wistar breed, with induced endometriosis, were divided into four groups and underwent treatment for 28 days. The CTRL group received 0.5 mL/day of the vehicle; the DG group received 1 mg/kg b.w./day dienogest; the RiDG group received 0.25 mL/kg b.w./day RiDE and the D+RiDG group received 1 mg/kg b.w./day dienogest and 0.25 mL/kg b.w./day RiDE, respectively. Rats' weight, endometriotic lesion diameter and grade, and plasma levels of MMP-2, MMP-9, and TGF-ß1 were assessed before and after treatment. The administration of RiDE in association with dienogest vs. dienogest determined a lower weight gain and a reduction in diameter of the endometriotic lesions. RiDE administration restored MMP2 and MMP9 plasma levels to initial conditions. Rubus idaeus extract may help in reducing dienogest-associated weight gain, lower the size of endometriotic lesions, and have anti-inflammatory effects through MMP2 and MMP9 reduction.


Assuntos
Endometriose , Rubus , Humanos , Ratos , Feminino , Animais , Endometriose/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Rubus/metabolismo , Fator de Crescimento Transformador beta1 , Polifenóis/uso terapêutico , Ratos Wistar , Melhoramento Vegetal , Aumento de Peso
17.
Int J Biol Macromol ; 264(Pt 1): 130354, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403223

RESUMO

The structure-activity relationship has been a hot topic in the field of polysaccharide research. Six polysaccharides and three polysaccharide fragments were obtained from raspberry pulp. Based on their structural information and immune-enhancing activity data, an artificial neural network (ANN) model was used for prediction, and Gradient-weighted class activation mapping (Grad-CAM) algorithm was exploited for explanation structure-activity relationship of these raspberry polysaccharides in the present study. The structural information and immune activity data of raspberry polysaccharides were respectively used as input and output in the ANN model. The training and testing losses of ANN model was no longer decreased after trained for 200 epochs. The mean-square error (MSE) of training set and test set stabilized around 0.003 and 0.013, and the mean absolute percentage error (MAPE) of training set and test set were 0.21 % and 0.98 %, indicating the trained ANN model converged well and exhibited strong robustness. The interpretability analysis showed that molecular weight, content of arabinose, galactose or galacturonic acid, and glycosyl linkage patterns of →3)-Arap-(1→, Araf-(1→, →4)-Galp-(1 â†’ were the main structural factors greatly affecting the immune-enhancing activity of raspberry polysaccharides. This work may provide a new perspective for the study of structure-activity relationship of polysaccharides.


Assuntos
Rubus , Redes Neurais de Computação , Algoritmos , Polissacarídeos/farmacologia , Polissacarídeos/química , Galactose
18.
Food Chem ; 445: 138708, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387314

RESUMO

Raspberry leaves were subjected to steam explosion at 0.5 and 1.0 MPa for 60-120 s, aiming to disrupt their physical and chemical structure and, consequently, promote the release of phenolic compounds into the leaf aqueous infusion. Under optimal condition of 1.0 MPa for 60 s, steam explosion led to a notable 23 % increase in total phenolic content, a 29 % elevation in ABTS radical scavenging capacity, and a 13 % rise in DPPH radical scavenging capacity of the aqueous infusion. Utilizing UHPLC-Q-TOF-MS/MS and UHPLC-QE-MS/MS techniques, respectively, a total of 39 phenolic compounds were identified from raspberry leaves, and the changes in the contents of the most important 11 species were analyzed following steam explosion. Through correlation analysis and considering the content of each phenolic compound, it was inferred that the heightened antioxidant capacity of the aqueous infusion primarily stemmed from a substantial increase in the release of ellagic acid after steam explosion.


Assuntos
Rubus , Vapor , Água , Espectrometria de Massas em Tandem , Fenóis/análise , Antioxidantes/química , Nutrientes/análise , Folhas de Planta/química
19.
Food Chem ; 445: 138778, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394909

RESUMO

Phenolic compounds are considered an important group of bioactive molecules that are present in abundant quantities in fruits such as berries and cherries; hence, the analysis and quantification of these compounds are of significant interest to the scientific community. The current study aimed to develop a novel analytical method using liquid chromatography and high-resolution mass spectrometry (UHPLC-HRMS) for the rapid, comprehensive and simultaneous analysis of 66 phenolic compounds optimized for the selected five types of fruits commercially available in Canada. Bioactive compounds that could potentially be metabolite markers for each berry were identified. Various phenolic compounds were identified and quantified in all five selected fruits. Notably, blackberries were rich in anthocyanins such as cyanidin-3-glucoside (368.4 ± 6 µg/g), while blueberries were rich in peonidin-3-glucoside (1083 ± 9 µg/g). In addition, raspberries and cherries contained significant amounts of cyanidin-3-rutinoside, at 3156 ± 36 µg/g and 301.3 ± 2 µg/g, respectively, while cranberries contained the highest concentrations of petunidin at 829.7 ± 3 µg/g. The newly developed and validated UHPLC-HRMS method proved helpful in comprehensively analyzing phenolic compounds in blueberry, raspberry, cranberry, blackberry and cherry. Identifying and quantifying bioactives can lead to applications in neutraceutical and pharmaceutical industries by using phenolic-rich berry extracts in functional foods, supplements, or pharmaceutical products.


Assuntos
Mirtilos Azuis (Planta) , Rubus , Vaccinium macrocarpon , Antocianinas/análise , Rubus/química , Frutas/química , Mirtilos Azuis (Planta)/química , Vaccinium macrocarpon/química , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Fenóis/análise
20.
Int J Pharm ; 651: 123760, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163525

RESUMO

Designing biodegradable microparticles with finely controlled release properties for tissue engineering systems remains a significant scientific challenge. This study introduces a novel approach by fabricating urethane-linked PLA/PGS microparticles loaded with magnesium peroxide. The microparticles offer potential applications in bone tissue engineering due to their ability to provide a controlled release of oxygen and magnesium ions while maintaining physiological pH. The PGS pre-polymer was synthesized via polycondensation and characterized using FTIR, 1H NMR, and GPC. Microparticle morphology transformed from smooth to raspberry-like upon incorporation of PGS, as observed by SEM. Microparticle size was tuned by varying PGS and PLA concentrations. FTIR analysis confirmed the successful formation of urethane links within the microparticles. MgO2-loaded PLA/PGS microparticles exhibited sustained release of dissolved oxygen and magnesium ions for 21 days while maintaining physiological pH better than PLA microparticles. Cell viability assays confirmed microparticle cytocompatibility, and ALP and Alizarin red assays demonstrated their ability to induce osteogenic differentiation. These findings highlight the potential of pH-controlled MgO2-loaded microparticles as an effective system for bone tissue engineering. In conclusion, this study presents a novel approach to designing biodegradable microparticles with adjustable release properties for bone tissue engineering. The urethane-based MgO2-loaded microparticles provide controlled release of oxygen and magnesium ions and regulate the environment's pH, making them a promising system for bone tissue engineering applications.


Assuntos
Osteogênese , Rubus , Engenharia Tecidual , Magnésio/química , Preparações de Ação Retardada , Uretana , Óxido de Magnésio , Íons , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...